Mark Scheme - Classification and Evolution

20		<i>Fertility</i> breed GM stock with non- modified stock (1) see if offspring fertile (1) if so they should be classed as the same species (1) ora <i>Morphology</i> Compare several individuals from GM and non-GM groups (1)	3	Marks awarded should be from one outlined investigation and the conclusion from its results. If more than one investigation suggested, mark the first investigation and IGNORE the others.
----	--	--	---	--

		in respect of several physical structures (1) if similar they should be classed as one species (1) ora Ecology observe how both function in the wild (1) occupy the same or different niche(s) (1) if same niche they should be classed as one species (1) ora Genetics compare DNA (1) by electrophoresis (1) same pattern should be classed as one species (1) ora	3	
21		<i>chimpanzee has (relatively)</i> smaller / shorter / thinner, thumb longer / narrower, palm thicker fingers wider wrists	2 max	ACCEPT ora for human IGNORE size IGNORE creases IGNORE creases IGNORE longer fingers IGNORE less space between fingers Examiner's Comments Most candidates were able to gain one mark. No scale was given on the figure so general references to size did not gain credit. Most correct responses referred to thumb length or palm length. Answers that discussed the pattern of lines on the palm were not credited. Responses needed to refer to either the chimpanzee or the human to avoid ambiguity, for example, 'the length of the thumb' on its own, gained no credit.
		Total	2	
22	i	<u>Felis</u> √	1(AO2.1)	Mark the first answer. If any additional answer is given then = 0 marks Need first letter upper case, rest lower case. Examiner's Comments

				This was well-answered with most candidates writing ' <i>Felis</i> ' with a capital ' F ' for the genus name.
				If additional terms are given then = max 1 for complete correct answer.
				ALLOW intra-species
				IGNORE phenotypic / genetic / species DO NOT ALLOW variance / variety
				Examiner's Comments
				The correct answer of 'intraspecific variation' gained 2 marks. Many candidates scored one for writing 'genetic variation'.
				? Misconception
				Wrong answers included evolution and natural selection. Candidates may have missed the command word ' <i>describe</i> ' and thought they needed to <i>explain</i> the cause of the differences instead.
	ii	intraspecific √ variation √	2(AO2.1 x2)	OCR support
				An exhaustive list of command words used in Cambridge Technicals is provided in this resource. It illustrates the use of many of the command words by applying them to an everyday object, a chair.
				https:/www.ocr.org.uk/Images/273311-command- verbs-definitions.pdf
				AfL
				Students could be shown the command words resource and be asked to make their own Biology version, by
				 listing all the command words used on this examination paper

				 using each command verb to write about a cell rather than a chair.
		 can produce fertile offspring √ (still) similar in appearance / not enough phenotypic difference(s) √ have only been, separated / isolated, for a short time √ genetically similar √ 	max 2(AO2.5 x4)	 2 ALLOW physically alike / similar characteristics 2 ALLOW similar cytochrome c (protein) sequence 3 ALLOW ora would need to be, separated / isolated, for a long(er) time 4 ALLOW genotypically similar Examiner's Comments Candidates successfully applied their knowledge of the biological species concept to the novel context, suggesting that the Scottish and European wildcats could still interbreed to produce fertile offspring and shared many phenotypic and genetic similarities.
		Total	5	
23		synthetic √ <i>Escherichia √</i> phylogeny / phylogenetics √	3(AO 1.1, 2.1)	Examiner's Comments Most candidates gained 1 mark for <i>Escherichia</i> . Fewer than a fifth were familiar with synthetic biology and less than 10% wrote 'phylogeny' in the final space – many candidates left it blank.
		Total	3	
24		Telmatobius √	1	must be written with a capital T note: the spelling must be correct DO NOT ALLOW if species name included Examiner's Comments This was a straightforward starter question about the binomial system for naming organisms. With careful reading the majority of candidates responded correctly with Telmatobius. Common errors were to add the species name or to call it 'amphibian'.
		Total	1	
25	i	Amanita √	1	First letter must be a capital, the rest must be lower case.

				Examiner's Comments
				Most candidates selected the correct name and wrote it with a capital letter.
	ii	one from 1 (starch) digestion in the regions where the, fungus / hyphae, not present ✓ 2 enzymes / they, are released / diffuse away, from the fungus or extracellular / secreted ✓	1	 ACCEPT breaks down (starch) in the, region / area / agar, around the fungus Examiner's Comments It was surprisingly rare for candidates to apply their knowledge of kingdom Fungi to realise that digestion here is extracellular, involving enzymes being secreted by the hyphae and acting outside of them. Some referred to 'it' and their subsequent answer did not make it clear whether the answer referred to the enzymes or the fungus.
		Total	2	
26		Column 1 Column 2 Class Order Genus √ sumatrensis √	2	If additional incorrect answer given, then 0 marks One mark per correct column. ACCEPT Animal / phonetic spelling / in lower case 'sumatrensis' must be all in lower case DO NOT CREDIT if the 's' is clearly upper case DO NOT CREDIT D. sumatrensis DO NOT CREDIT D. sumatrensis DO NOT CREDIT Sumatran / sumatran Examiner's Comments In the classification table the categories of taxa were correctly stated by the majority but the actual classification groups within the taxa posed more problematical: in particular identifying 'Animalia' as the correct kingdom. Eukaryota was a common error. Although many candidates correctly stated the species as 'sumantrensis', very many were not credited the mark because of using a capital letter.
		Total	2	
27		* Level 3 (5–6 marks) Full and detailed evaluation of the claim using all of the data in Table 5.1. Learner demonstrates a holistic	6	Indicative scientific points may include: Support for conclusion (that common and soprano pipistrelle are distinct species)

28	i	Total	6 4	One mark for level numbers all correct in Column 1.
		relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		
		The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the		ALLOW a comment on whether the researcher's conclusion is supported.
		Level 1 (1–2 marks) An evaluation of the claim is attempted using some of the information in Table 5.1. Simple conclusions are drawn citing limited aspects of the data.		 species same colour, could be same species potential environmental cause of body mass variation implies weak challenge to conclusion.
		data. There is a line of reasoning presented with some structure. The information presented is in the most- part relevant and supported by some evidence.		 areas Could be different species adapted to slightly different environments. Challenge to conclusion same mean body mass, could be same
		presented is relevant and substantiated. Level 2 (3–4 marks) Detailed evaluation of the claim using most of the data in Table 5.1. Sound judgement is made on a range of aspects of the		 challenge Mean wing span is very similar Could indicate difference, though not significant Could be due to environmental factors, where the populations live Habitats overlap Could indicate same species in different
		judgement of the data providing evidence for and against the claim. There is a well-developed line of reasoning which is clear and logically structured. The information		 echolocation ranges do not overlap genetic basis for echolocation suggests genetic difference between populations idea that different species are likely to have genetic differences.

			Sequence of Levels ✓ 4 7 5 1 6 2 3	Level Order Species Family Kingdom Genus Phylum Class	Name Artiodactyla scrofa √ Suidae Animal(ia) √ Sus √ Chordata Mammalia		DO NOT ALLOW if scrofa is given capital S. ALLOW "Animals" DO NOT ALLOW if Sus is given lower-case initial s.
		ii	science ki advances grows / A	/ improv		1	"Develop" is in the question.
			Total			5	
29			universal worldwide know whic species, if <i>idea of</i> dif name for organism	e / AW ✓ ch, genu t belong fferent cu	, s to ✓ ommon	max 1	 ACCEPT no language barrier ACCEPT ref to showing evolutionary relationships (e.g. shows common ancestry) Examiner's Comments Most candidates stated that the advantage of the binomial naming system is that it is used as a universal language and therefore avoids confusion over different common names for the same organism.
			Total			1	
30			any two fro eukaryotic detail of e ✓ aquatic ✓ most are u multicellul autotrophi ✓	<u>c</u> (cells) ukaryoti unicellul ar √	c feature ar / few	2 max (AO1.1)	e.g. (named) membrane-bound organelle, 80S ribosomes, linear DNA, DNA with histones
			Total			2	
31	а	i	C / riboso	mes		1	
		ii	Any two fr	rom:		2	

	b		A rough endoplasmic reticulum D Golgi apparatus E secretory vesicle F mitochondrion (1)(1)	3	letters must be in correct order, if not all correct: allow one mark if C/A as first letter given allow one mark for E as last letter given allow one mark for D in the middle IGNORE B as this is plasma membrane rather than an organelle
			Total	6	
32		i	Ministeria √	1 (AO2.1)	DO NOT ALLOW 'Ministeria vibrans' or 'M. vibrans'
		ï	specieskingdomcell wall moleculeS. tuberosumPlants / PlantaecelluloseC. pallensFungichitin	2 (AO3.1)	1 mark per column
			Ref. to nucleoid OR loop / circular OR free in the cytoplasm √ not associated with, histones / proteins OR is naked √ only one, molecule / chromosome / OR ref to plasmids √	1 max (AO1.1)	IGNORE refs to no nucleus DO NOT ALLOW single strand
			Total	4	
33		i	 protoctista √ nucleus / (named) membrane-bound organelles , so 	42 max AO3.1 AO3.2	1 ALLOW protista 2 IGNORE eukarya 2 IGNORE peptidoglycan 4 IGNORE autotrophic

			eukaryotic / not prokaryotic √ unicellular so not plant(ae) √ cell wall / chloroplast / starch grains, so not animal(ia) √ cellulose cell wall / chloroplast , so not fungi √		5 ALLOW cell wall not chitin so not fungi 5 IGNORE autotrophic
		ii	(nucleic acid) base sequence / amino acid sequence √ genes / DNA / RNA / cytochrome C √	1 AO2.1	ALLOW genetic material IGNORE chromosomes / RNA polymerase / ribosomes DO NOT CREDIT haemoglobin
			Total	5	
34	а	i	ribosome(s) √	1	If additional incorrect answer given, then 0 marks Examiner's Comments Candidates did not appreciate the term 'component' so although many candidates realised it was RNA they didn't realise that the component would be a ribosome or that it was ribosomal RNA. Incorrect responses included nucleus, or a variety of different parts of the cell including cell surface membrane, cytoplasm or DNA.
		11	(Eu)bacteria √ Archaea(bacteria) √	2	In either order DO NOT ACCEPT bacterium ACCEPT phonetic spelling Examiner's Comments Most candidates were able to identify at least one of the two domains correctly, usually 'Archaea'. The most common incorrect answers were Prokaryotes or Prokarya and Protoctists, but also Plantae and Animalia. This indicates that there is some confusion over the Domains classification system.
		iii		2 max	<i>Mark the first two answers but</i> IGNORE multicellular DO NOT ACCEPT microtubule / cytoskeleton / centriole

35		A	1	Examiner's Comments
		Total	7	
	b	 scientific, conferences / meetings ✓ peer review / approving the work for publication / publication in (reputable) scientific journal ✓ replication of work (by 3 others to see if the same results are obtained) ✓ look for more (supporting) evidence (e.g. from other 4 peoples' work / investigating other molecules) ✓ 	2 max	 usually 'membrane bound organelles' or a named organelle. Many candidates stated 'multicellular' which suggested a lack of understanding that many unicellular organisms also belong to this domain. A few candidates did not specify 'linear DNA', or that ribosomes were 'larger' or '80s'. ACCEPT analysing the procedures and data of the investigation ACCEPT (others) repeat the experiments Other molecules could include cytochrome C Examiner's Comments This question was relatively well answered with the best responses including two clear validation methods such as replication of work and peer review. Most candidates only referred to one method, usually the replication of work or the additional supporting evidence. A few candidates mistakenly discussed why his work was accepted rather than validated.
		nucleus ✓ DNA with, histones / (associated) proteins ✓ linear DNA ✓ (named) membrane bound organelles ✓ 80s ribosomes ✓		IGNORE chromosome IGNORE chloroplast ACCEPT large(r) ribosomes Examiner's Comments Most candidates gave one correct answer, usually 'nucleus', and many gave a correct second answer,

					There is some evident confusion with taxonomy. Despite many candidates choosing the correct option, D was a common suggestion.
			Total	1	
36		i	fossils (1) <i>idea that</i> fossils deeper in the ground are older than those near the surface (1)	2	ALLOW reference to radiometric dating IGNORE refs to carbon dating as time-scale is too great
			Any two from		
		ii	similar tail segments lateral spines (1)	1	
		iii	no scale given on figure (1) <i>idea that</i> comparison in absolute length cannot be made (1) <i>idea that</i> comparison in relative length (compared with body length) could be valid (1) maturity / age, of specimen unknown (1) <i>idea that</i> only one individual of each species observed (1)	2	
		iv	adaptation and explanation must both be present to be awarded the mark tail for, swimming / movement (1) OR segments, for flexibility / moving tail / swimming (1)	1	ALLOW streamlined shape for movement in water
			Total	6	
37	а	i	action potential / nervous impulse, in sensory neurone √ synapse / described √ relay / intermediate, neurone √	3 max	
			(nervous impulse in) motor		

			neurone, passes to / AW, effector / muscle \checkmark		
		ii	<i>idea of</i> maintains balance / efficiency of movement √	1	
			kinetic / movement, energy converted √		
			to, electrical energy / action potential \checkmark		
		iii	<i>idea of</i> movement of statolith moves sensory hairs √	3 max	
			membrane of sensory hairs depolarises √		
			Support is weak because		
	b		<i>idea that</i> clasification based on phylogeny √	2	
	5		statocysts could, have evolved on more than one occasion / be an example of convergent evolution √	L	
			Total	9	
38			sequence of , amino acids / DNA bases / RNA bases √ the smaller the, number of differences / percentage difference, the more closely related they are √ ORA reference to named protein e.g. cytochrome c √	2 (AO1.2)	ALLOW the more similar the sequence the more closely related
			Total	2	
39	а	i	fossils in, known-age / Jurassic, strata / rocks	1	
		ii	DNA / cytochrome c	1	
	b	i	carbon dioxide diffuses down concentration gradient out of the respiring cell (1) carried through body from cell (to tracheoles) by blood	4	

		trachea / spiracles (1) respiration generates heat (1) hot gases expand and are less dense so rise up by convection through the mound to vents at mound- top (1)		
	ii	<i>shape,</i> large or increased surface area to volume ratio (1) smallest area exposed to greatest heat (1)	2	Response must be linked to context of avoiding overheating / needing to get rid of heat.
		Total	8	
40	i	genetic polymorphism / proportion of heterozygotes / proportion of gene variants √	1 (AO1.1)	CREDIT number of polymorphic genes <u>Examiner's Comments</u> Less than 1 in 4 responses achieved this relatively straightforward AO1 mark Some candidates appeared to miss the significance of 'genetic' and suggested various sampling techniques or Simpson's index of diversity. Others appeared to attach little significance to 'diversity' and described DNA sequencing techniques or the Hardy-Weinberg principle.
	ïi	(many) <u>alleles</u> lost (when population dropped) √ ora (modern population) descended from few survivors / AW √	2 (AO2.5)	ALLOW few alleles were left after drop in population ALLOW cheetahs still alive descended from a small gene pool IGNORE founder effect unqualified Examiner's Comments This was a relatively low scoring question. Most responses did not address the question that was asked but rather attempted to explain what a genetic bottleneck was or to discuss the consequences of low genetic diversity. Those candidates that did address the question usually achieved 1 mark, often for referencing the loss of alleles when the population crashed. However, some such responses did not achieve this mark because of imprecise references to reductions in allele frequency, rather than number of alleles or because of conflation of 'genes' with 'alleles'. Fewer

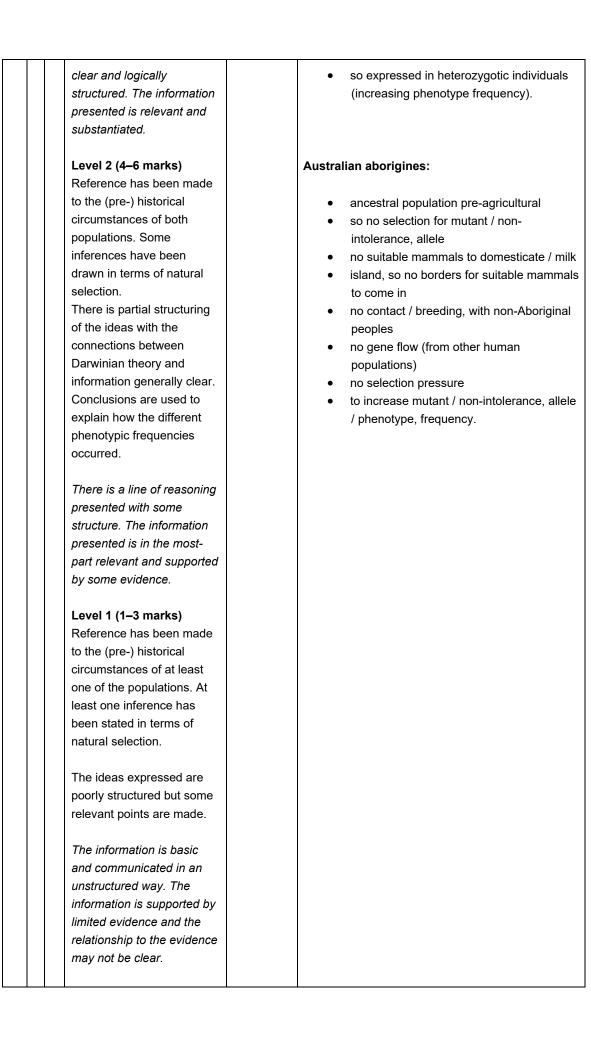
					candidates discussed the idea that the modern population were all descended from the diminished original. Some responses hinted that candidates thought the genetic bottleneck had occurred within the last 100 years, perhaps misunderstanding the significance of 'relatively recently' in terms of the existence of the species.
			<i>idea that</i> one individual or allele has proportionally higher effect on small population √ (more likely that) <u>alleles</u> will be lost from population √ (population) more vulnerable / likely to become extinct due , to environmental change / AW √	2 max (AO1.2)	IGNORE founder effect unqualified ALLOW example of environmental change E.g. might become extinct because of (new) disease IGNORE event Examiner's Comments Genetic drift seems to be poorly understood on the part of candidates. Many responses appeared to confuse genetic drift with speciation or inbreeding depression; others discussed the decreased likelihood of meeting another cheetah. Around a quarter of responses achieved 1 mark and very few scored both. Some of the candidates that appeared to know what genetic drift affects small populations, which added little or nothing to the information given in the question.
			Total	5	
41	а	i	sympatric √	1(AO1.2)	
		ï	<i>idea that</i> individuals choose to mate only with other individuals with similar sized beaks √	1(AO1.2)	CREDIT sexual selection ALLOW different , mating seasons / courtship rituals
			(DNA) found in all organisms √ some / AW , sequences highly conserved √ comparison (of DNA between species) √ similar (base) sequence indicates recent common ancestor √ ora	2(AO1.1)	ALLOW look at similarities in DNA IGNORE closely related

Classification and Evolution

	b	arı pro (pa <i>ide</i>	rived at inde esented / pr aper) , toge		2 max(AO1.1 AO2.3)	Examiner's Comments Very few candidates seemed aware of Wallace, often linking him to genetics or DNA. This question was often omitted.
		То	otal		6	
42	ß	nu / m ide tww sin ab ev dif se ev bid se ev bid fro ac sin ev dif se	ntDNA / RN ea that in sau to species s milarity in an pove can imp volutionary r fference / di equence imp volutionary c ological mole oteins / poly tochrome C aemoglobin ea that in the om two spec- cid / primary milarity impl volutionary r	(nuclear) DNA A (1) mples from equence by of the ply an elationship, vergence in blies distance (1) ecule repetides / c / (1) e same protein cies, amino sequence ies elationship, vergence in blies	4	ALLOW named proteins commonly used
	b	ch are to ge the str ex inc be ch	Deduction maracteristics e passed on the next eneration ere is a ruggle for tistence (1) dividuals with eneficial maracteristics e among the	Supporting observation(s) E (1) G and H F and G and H (1)	3	

			few who survive				
			Total	7			
43	a	i	Total differences completed correctly √ squares of differences completed correctly √	2	IGNORE all negations of the second se	V negatives in Dif mp 2 Difference in ranks (d) 2 0 0 0 4 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0	ference squared Difference squared (d ²) 4 0 0 16 0 16 0 1 0 49 0 1 49 0 1 49 0 1 49 0 1 49 0 1 49 0 1 49 0 1 49 0 1 4 1 0 4 1 0 4 1 0 1 1 0 4 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
			ro = 0.576 / 0.52 / /		square of the diff	m table	
		ii	rs = 0.576 / 0.58 √√	2	e	e.g. n(n2-1) = 990 6x70/10(99) √	

			 0.57 = one mark (incorrect rounding) 0.580 = one mark (for incorrect rounding) 0.6 = one mark (rounding too far) Examiner's Comments Candidates were asked to calculate Spearman's rank correlation coefficient. Many candidates managed to do this successfully. If the values in the table were incorrect the error was carried forward to enable candidates to achieve these marks using their own data from the table in part (i). Less able candidates often struggled to carry out this calculation correctly. Sometimes this was because they did not transfer data accurately into the table.
bi	further away from the river less water (available) / ORA ✓ transpiration causes water loss ✓ hairs, trap water vapour / reduce transpiration / reduce loss of water (vapour)√ reduced water (vapour) potential gradient from inside to outside leaf √	2 max	DO NOT ALLOW 'further from source' 'no source' DO NOT ALLOW hairs prevent water (vapour) loss Examiner's Comments This question asked candidates to explain how leaf hairs enabled the plant to conserve water in the context of differing water availability at different distances from the river. More able candidates had a good idea that leaf hairs could reduce water loss. They also understood that this was required because there was less water available further from the river. Less able candidates often became confused and wrote about leaf hairs absorbing water from the less humid environment. Some even seemed to think that leaves closer to the river had more hairs which helped the leaf to lose water. Exemplar 7 ^(a) The determination of the close to the river is a solution of the river is a solution of the river. (a) Some react for these is positive constitue to the river. (a) Some react for the river is the solution the river. (a) Some react of the river is the river. (b) Some react of the river is the river. (a) Some react of the river is less available further and concise response. It shows a clear understanding that water is less available further away from the river and that the leaf hairs will reduce transpiration. The candidate goes on to


				explain that transpiration is loss of water vapour via the stomata.
	ii	same / similar, size / age, trees \checkmark same / similar, size / age, leaves \checkmark repeated leaves from each tree and calculate mean \checkmark record results at same, time of year / day \checkmark ensure leaves selected are from, same side / same height / evenly distributed around tree \checkmark systematic sampling / sample at set distances (from river) / described \checkmark	3 max	Examiner's Comments This question asked for candidates to describe ways to improve the validity of their sampling techniques. Validity is all about controlling the variables around the collection of data so that the data are not affected by inconsistencies. The technique is valid if it measures what it is supposed to measure. There was a wide range of responses. It was clear that many candidates did not really understand the meaning of the term 'validity'. Few candidates achieved full credit and many responses described ways to improve repeatability. In many cases the responses were not well phrased. Exemplar 8 Suggest three ways h which the sudents could improve the validity of their sampling 'height' from the trees'. 2 Use similar Size trees 3 Use similar area. 1 Use Leaves from the score of a similar area. 2 Use similar Size trees 3 Use similar area. 1 The exemplar the candidate has given three clear statements. Each statement describes a way to remove a variable to ensure the data collected are comparable. This makes the sampling techniques valid.
c		their conclusion is incorrect ✓ reject (the student's), hypothesis / H1 ✓ there is no, relationship / correlation, (between leaf hair density and distance from river) / the pattern seen is due to chance √	2 max	ORA accept the null hypothesis / H ₀ <u>Examiner's Comments</u> Candidates were asked to evaluate a conclusion. It was clear that many candidates did not really know how to interpret the results of a statistical test. If the calculated value of Spearman's rank is below the critical value then we can say that there is no correlation. Many candidates seemed to suggest that because the calculated value was close to the critical value that was OK. Less able candidates become very confused and compared the

					calculated value to 5% or even to 9. Definitions of the terms associated with practical work are available in the practical skills handbook.
					Exemplar 9
					Evaluate the conclusion of this group of students. The rs value is blow the critical value so there isn't a ke significant Correlation and it may be due po to chance so their conclusion is wong.
					This exemplar shows a rare case where the
					candidate has a good understanding of how to interpret the results of a statistical test. The
					candidate makes clear that the calculated result is
					below the critical value and states that this means there is no significant correlation.
					Examiner's Comments
	d		continuous √	1	This question asked for the pattern of variation shown. The correct pattern is 'continuous' variation. There was a wide range of responses and lower ability candidates simply described the pattern rather than stating a name for the pattern.
			Total	12	
			positive correlation or		ALLOW 'as body mass increases lifespan increases'
44		i	the higher the body mass the, longer / higher, the lifespan √	1 (AO2.2)	DO NOT ALLOW 'increase in body mass causes them to live longer'
					IGNORE weight / size for mass
					IGNORE weight / size for mass ALLOW 'longer / higher / bigger, than expected'
			lifespan is greater than	1 (402.0)	Examiner's Comments
		ï	expected for its mass / AW √	1 (AO3.2)	Many candidates answered correctly but some wrote that the lifespan was greater than expected without referring to mass, and some referred to size instead of mass which was not precise enough.
			Total	2	

45	i	4.7 √√	2 (AO2.6)	Max 1 if answer not given to 2 s.f. IGNORE sign If answer incorrect ALLOW 1 mark for 4.8 or 4.9 <u>Examiner's Comments</u> Most candidates scored on this question, either getting the full 2 marks for 4.7 or getting one mark for 4.8 or 4.9 as a result of dividing by the female length rather than the male. The majority of candidates answered to 2 significant figures as instructed.
	ii	little / nothing (can be concluded) √ because no (named) statistical test done √	2 max (AO3.1)	IGNORE 'not significant' If no other marks awarded, ALLOW 1 mark only for (probably) not significant because , <u>error</u> bars / standard deviations , overlap <u>Examiner's Comments</u> Less than 1% of candidates gave the full correct answer, i.e. that, without performing a statistical test, nothing can be concluded. However, around a third of responses gained 1 mark by stating that the difference was probably not significant because the error bars overlapped. Although not strictly true, this approach is obviously being taught by centres. Many responses included phrases like 'low significance' or 'not very significant'. These largely meaningless terms gained no credit. Candidates are advised to stick with the absolute term: the difference is or is not significant. A number of candidates confused the percentage difference in height (4.7%) with the 5% probability used to determine significance and gained no marks.
		<i>No, because</i> <i>idea that</i> standard deviation is not the same as range \checkmark	1 (AO3.2)	 ALLOW e.g. SD does not include all outliers / error bars don't show range <u>Examiner's Comments</u> Around half of responses stated, correctly, that the information did not support the candidate's answer and a majority of these gained a mark. A minority,

					however, believed that the reason the candidate's answer was not supported was that the mean length was that of the longest cheetah. The other half of responses incorrectly stated that the information did support the candidate's answer, usually because they interpreted the error bars as range bars.
		iv	environment √ genes / genetic / alleles , and environment √ <u>many</u> genes / polygenic √ age √	2 max (AO2.1)	ALLOW suitable example, e.g. diet Note 'genes and environment' = 2 marks IGNORE refs to mutation Examiner's Comments About half of responses achieved 2 marks. However, many wrote unnecessarily long explanations. The command word 'state' ought to have directed candidates to answer quickly with short, direct, statements. On this occasion a three- word answer 'genes and environment' easily achieved both marks. Many candidates missed the significance of the context of the question, i.e. that body length displays continuous variation and that any contribution from genes is likely to be minimal in the relatively genetically homogenous cheetah population; hence, answers that focussed on genetic variation alone achieved no credit. Responses that did not answer the question, such as lengthy discussions of the potential advantage of
			Total	7	longer body length in males, received no credit.
46	ß	i	number of seeds per pot √ size of pot √ type of soil / compost used √ mass of soil / compost used √ temperature √ light intensity √ oxygen / carbon dioxide concentration √	Max 2	e.g. depth of planting

		ï	% moisture on horizontal axis and number seedlings germinated on vertical axis√ both axes clearly labelled with unit for moisture√ plots for separate species clearly distinguished√ points plotted accurately√	4	ACCEPT either li chart with two ba			
			correct data entered into all		60	4	42	5
	b	i	cells in table \checkmark	1	80	5	33	4
			$\Sigma d^2 = 2 \checkmark$					
		ii	0.9 √√	2	Two marks for co If answer incorre showing formula r _s	ct allow c complete	one mark for v ed correctly 6 x 2	vork
		∷	the correlation (between moisture and germination) is not significant (at the p = 0.05 / 95% confidence level)√	1				
			Total	11				
47			* Level 3 (7–9 marks) Extensive reference has been made to the (pre-) historical circumstances of both populations. Inferences have been clearly drawn in terms of natural selection. Learner demonstrates a holistic grasp of the Darwinian theory and the information given; reaching reasoned conclusions that explain how the different phenotypic frequencies occurred. <i>There is a well-developed</i> <i>line of reasoning which is</i>	9	 variation intolerar availabil selection individua intolerar survival direction mutant / accumu genetic populati 	icultural) n, include nce, allele ity of mill n pressur als / grou / succes nal select non-into lated (in drift (in si on)	gene pool / g d mutant / no e c acted as (po re ps, with muta e had better, d s in reproduct ion lerance, allele gene pool) mall prehistor	enetic n- ositive) nt / non- chance of tion

		0 marks No response or no response worthy of credit.		
		Total	9	
48		(named) chemicals (1) folding (1) stings (1)	2	ALLOW 2 named chemicals
		Total	2	
49	i	anatomical √	1	 Mark the first answer only. If additional incorrect answer given, then 0 marks ACCEPT anatomy Examiner's Comments A minority of candidates scored this mark for identifying the adaptation as an anatomical adaptation. A range of answers were seen; 'physiological' was the most common mistake.
	ii	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics):		

 award the higher mark where the Communication Statement has been met. award the lower mark where aspects of the Communication Statement have been missed. The science content determines the level. The Communication 		
Statement determines the mark within a level.	6	Indicative scientific points may include Natural selection
A level annotation should be used where all marks for a level have been achieved eg for 6 marks L3 If a candidate has achieved 5 marks then they have reached level 3 but with one mark omitted e.g L3 ^ The same principle should be applied to level 2 and level1 No marks (0) should have a cross Level 3 (5–6 marks) Provides a full and accurate description of natural selection and describes the role of regulatory gene(s) and mentions a correct role of a structural gene. <i>There is a well-developed line</i>		 mutations (e.g. of pigment gene, and of regulatory genes) selection pressure of prey availability the adaptation helped tigers hide from prey / ref to camouflage striped tigers had a greater survival probability and were more likely to reproduce beneficial alleles were passed on to the next generation the allele frequency for the relevant genes would have increased with each generation after many generations, all tigers within a population were striped <i>Roles of regulatory genes</i> (regulatory) genes control, the pattern / where pigments produced / expression of other genes genes switched on or off during development (i.e. epigenetic changes / transcription factors) correct roles for epistasis – e.g. recessive epistasis preventing expression of pigment gene ignore role of hox genes as not relevant ignore value of hox genes as not relevant

		and logically-structured and uses scientific terminology at an appropriate level. The information presented is relevant and substantiated. Level 2 (3–4 marks) Provides a description of natural selection with few errors or omissions and mentions a correct role of a structural gene (e.g. for fur colour / pigmentation) There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented in the most part relevant and supported by some evidence. Level 1 (1–2 marks) Provides an outline of natural selection There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.		Examiner's Comments Fewer than 5% of candidates accessed Level 3 on this question. The majority of the rest only accessed Level 1 due to the fact that they were able to identify that the evolution of a tiger with striped fur was due to natural selection, but they did not correctly identify a mutation in a structural gene as being the main cause. Many students who fell into this category wrote about a 'mutation in a gene for striped fur' rather than naming the structural gene as being responsible for fur colour or producing a coloured pigment. In a few cases, candidates correctly identified a structural gene, and gave a developed example of how regulatory genes may contribute to stripes, giving access to Level 3. However, the role of regulatory genes in controlling gene expression is an area which was poorly understood by the majority of candidates. The other main weakness in response to this question lies in the identification of the correct selection pressure for stripes being better adaptation for hunting due to camouflage. Only approximately 50% of candidates identified this. The Communication mark within a level was given in most cases, except where the odd candidate left out large amounts of detail or incorporated lots of irrelevant material.
		Total	7	
50	i	<i>Fossa has</i> longer , legs √ different (shaped / size) , ears √ (proportionally) bigger eyes √	1 max (AO2.3)	Mark the first response only Assume 'it' refers to mongoose IGNORE references head / body / shape ALLOW ora for mongoose throughout ALLOW longer tail / larger jaw <u>Examiner's Comments</u> The vast majority of candidates achieved this mark. Some were even able to correctly refer to

		mutation / genetic diversity √ natural / directional , selection √ <i>idea that</i> environment / selection pressure , is <u>different</u> from the 'other' population √	3 max (AO1.2)	marking points 2 and 4, as these are context- dependent, the marks have not been given. Exemplar 10 Population isolated and under de(gerent environmental selection pressure. Gene mutation in an individual which cauter mem to be larger is considered an advantageout dharadenshic (move parter to catch food etc), so they are more likely to such and pay on allels to oppeny overhime true aref. Frequency changes so mat posto are eubliced
		time √		other in the question and, hence, listing methods of reproductive isolation. Mutation and different environmental conditions were the most commonly seen correct answers but references to natural selection and time were rare.
		Total	8	
51		No waxy cuticle idea that water loss is not a problem / wax production wastes energy /AW √ Stem tissue contains air spaces buoyancy / (allows it to) float / increases gas exchange / more light near	3 (AO2.1)	ALLOW does not impede flow of materials through cell wall / shorter diffusion distance / easier gas exchange / faster gas exchange / gas exchange more efficient

		surface of water / AW \checkmark		
		<i>Thin, flexible stem</i> less support needed / plant		e.g. less likely to be damaged / not damaged by, water currents / aquatic animals
		is supported by water / can move more (in water) without breaking / AW √		Examiner's Comments
				The majority of candidates gained at least one mark for this question, with a high proportion gaining 2. Only a few candidates mentioned that the production of a waxy cuticle wastes energy as water loss is not a problem. However, many candidates correctly related the presence of air spaces in the stem to aiding buoyancy and the flexibility of the stem to being able to move without breaking.
		Total	3	
52	i	224 √	1 AO2.2	haploid number = 28 x 2 for diploid number = 56 x 2 after DNA replication = 112 x 2 strands per molecule = 224
	ii	a cross drawn anywhere between sporophyte and spores √	1 AO2.5	
	iii	<u>many</u> mitochondria √ to supply , energy / ATP , for movement √ OR	2 AO2.1	Mark the first suggestion given but ignore partially achieved marking points DO NOT CREDIT make energy
		enzymes / acrosome √ (enzymes) to , penetrate / AW , egg √		ALLOW to digest outer layer / break through membrane DO NOT CREDIT break down egg cell wall
		Total	4	
53	i	genetic (biodiversity) √	1	Examiner's Comments Many candidates correctly named this type of biodiversity as genetic. Incorrect answers included 'variation' or suggested 'environmental', 'habitat' or 'species'.
	ii	allows for adaptation to changing environment √	1 max	ACCEPT in the context of an example e.g. species survival when, a / new, disease introduced

	provides variation for natural selection ✓ can offer, camouflage / protection from predators ✓		Examiner's Comments Many suggested that the colour variation was an adaptation to the environment but did not indicate the crucial idea of a <i>changing</i> environment. Camouflage was a popular correct answer.
	Total	2	
			IGNORE ref to large surface area and short diffusion path IGNORE ref to solute potential / isotonic ACCEPT Ψ for water potential 'it' or 'they' = root hairs IGNORE ref to roots or root cells unqualified as hairs ACCEPT root hair, has / creates, a lower water potential (than soil) ACCEPT maintains / sets up / establishes, a (steep) water potential gradient Look for a comparison in water potential between the cell and the soil
54	there is a lower water potential inside root hair (cells) ✓	2	IGNORE solutes / sugars / hydrogen ions ACCEPT named ions ACCEPT named ions ACCEPT named solutes e.g. sugars
	actively transport / pump, (mineral) ions / salts, into root hair(s) (cells) or root hair(s) (cells) store / contain, (mineral) ions / salts / solutes ✓		Examiner's Comments This question highlighted the failure of many candidates to use the correct scientific terminology. In particular was the use of 'concentration gradient' without showing an appreciation of, or even mentioning, water potential, despite the previous parts of the question being on that subject. Where active transport was mentioned some thought it was the water that was pumped into the cell or that transpiration was also involved. Many candidates understood the principal of reducing the water potential of the root hair cells but failed to gain credit by referring to the roots or the plant without specifying the 'root hair cells'.They also talked about the large surface area of root hair cells, which also failed to gain credit.
	Total	2	
55	i 1.7 mm (1)	1	

	ii	× 50 (1)(1)		ALLOW 1 mark for correct working e.g. 80 / 1.6 ALLOW answer in the range of 48–51
	iii	air spaces give buoyancy (1) supported by (surrounding) water (1)	2	
		Total	5	
56	ï	three from similar, niche / lifestyle / AW (1) similar selection pressure (1) <i>idea that</i> wings are advantage for survival in both bats and birds (1) alleles for 'wings' more likely to be passed to next generation (1)	3	ALLOW 'same' ALLOW 'same' ALLOW 'genes'
	ii	<i>idea that</i> echolocation not needed for an animal active during the day where reduced visibility is not an issue (1)	1	
		Total	4	
	İ	<i>idea that</i> the third diagram shows that the resistant, bacteria / colonies, were already present (on the original plate)	1	IGNORE penicillin will kill them so in order for them to survive the mutation must have already happened IGNORE no time for natural selection to take place – as these are explanations and not evidence Examiner's Comments
57		or these (resistant) bacteria on the original plate continued to grow when flooded with penicillin ✓		Most candidates found this question challenging, tending to repeat or rephrase the stem of the question. Vague or ambiguous references to being exposed to penicillin were insufficient as they needed to clearly refer to the original colonies that survived when the original petri dish was flooded with penicillin. The candidates needed to take careful note of the diagrams and the information provided in order to make an informed statement.

					Examiner's Comments This question elicited the following incorrect answers on a frequent basis: binary fission, mutation, evolution and mitosis. Some misunderstood the question and referred to antibiotic resistance, immunity or vaccination.		
			Total	2			
			editing of primary, mRNA / transcript √		IGNORE introns are non-coding (as this is not an explanation) ALLOW introns removed		
58		i	not present in mature mRNA √	2 max(AO 1.2)	ALLOW used to make , tRNA / rRNA		
			not translated √ regulatory, sequences / genes √		Many candidates offered descriptions of what 'non- coding' might mean rather than explaining the reasons why some sections did not code for a polypeptide.		
		ii	not selected against / AW \checkmark	1(AO 2.5)	ALLOW doesn't affect survival		
			Total	3			
59			Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.Level 3 (5–6 marks) Explains how genetic variation, differential survival and the passing on of alleles to the next generation act to increase the proportion of the population with a beak length of around 11mm and makes appropriate use of the graph data to support explanation.6(AO2.5) 3.2)	6(AO2.5 3.2)	Indicative points may include AO2.5 Genetic variation • pre-existing • sexual reproduction • meiosis • mutation Differential survival • overproduction of offspring • finches with extreme beak depth less likely to survive • reason for birds with very small or large beaks not surviving		
			There is a well-developed line of reasoning which is clear and logically structured. The		Inheritance		

	<i>information presented is</i> <i>relevant and substantiated.</i> Level 2 (3–4 marks) Explains how natural selection acts to increase the proportion of the population with a beak length of around 11mm. <i>There is a line of reasoning</i>		 survivors possess alleles for average beak depth alleles for average beak depth more likely to be inherited by offspring increase frequency of these alleles from one generation to the next 			
	presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Explains how natural selection favours those in the population with an		 Use of figures from graph bell-shaped curve skewed to right beak depth with peak survival is 11.2 mm no birds survived with beaks of 7.4 mm or less no birds survived with beaks of 11.6 mm or 			
	average phenotype OR that natural selection favours finches with a beak length of around 11 mm.		more <u>Examiner's Comments</u> The majority of the candidates were able to use the			
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		data in the graph correctly and they were able to outline that birds with very small or very large beaks did not survive whereas those with average beak sizes did. Most of the candidates had to explain the process in more detail, by including details about the importance of genetic variation or inheritance of alleles for average beak size. Many candidates successfully referred to the graph within their answers and so were able to access the higher levels. A few candidates did not seem to appreciate the fact that extremely large beak sizes were being selected against as well as extremely small ones. There was a small but significant number of candidates that discussed the data in the graph as if the x-axis represented time, rather than beak size			
	Total	6				
60	adapted to occupy the (oil spill) , <u>niche</u> / <u>environment</u> ✓ outcompete other , bacteria / species ✓ oil is acting as <u>selective</u>	1 max (AO2.5)	Examiner's Comments This was also a challenging contextual question for candidates to achieve a mark in as responses had to offer something not already included in the question. Many candidates did not appreciate from			
	agent / selection of bacteria		the context that there would not always be oil			

		that were able to digest oil \checkmark		present in the area, merely that oil spills happened with some regularity, hence answers like 'they can gain nutrition from the oil' were not credited without further explanation.
		Total	1	
61	i	<i>two from</i> babies / infants (1) elderly / infirm (1) immuno-compromised / on immunosuppressant drugs / HIV positive (1) known to have been exposed (to the infection) (1)	2	
	ij	two from (antibiotic is) selective pressure (1) (bacterial) gene pool / AW, has variation (1) (only) some bacteria have resistance / some bacteria are more resistant than others (1) <i>two from</i> when exposed (to antibiotic) most-resistant survive (1) surviving bacteria continue to reproduce to make a resistant population (1) <i>idea that</i> over many generations there is an increase in proportion of resistant bacteria (under continued antibiotic pressure) (1) antibiotic becomes ineffective / new antibiotic needed (1)	4	IGNORE increase in number of resistant bacteria.
		Total	6	
62	i	3140 ✓ ✓	2	 Correct answer = 2 marks, even if no working shown. If the answer is incorrect or has not been rounded to 3 sig. figs., then award 1 mark for seeing either

				$\frac{1652 - 51}{2}$ $\frac{1601}{2}$
				x or x
				where $x = any$ number
				or an unrounded answer (e.g. 3139.2156
				or 3139)
				• If the incorrect peak has been chosen,
				then award 1 mark only for a correct
				answer which is correctly expressed to
				3 sig. figs.
				Using 1649 the correct answer is 3130
				Using 1593 the correct answer is 3020
				Examiner's Comments
				Candidates should be encouraged to always show
				their working for calculations. Those who did were
				frequently able to be awarded a mark for working
				despite having the incorrect answer. Most were
				able to select the correct figures but were unable to
				manipulate them correctly. Calculation of
				percentage increase, decrease or change proves to
				be challenging for candidates.
				IGNORE ref to raw data
				ACCEPT 'over 4 x greater in 2012'
		was lower (in 1993)		
		or		
		has increased / is higher (in		
	ii	2012) 🗸	2	ACCEPT 52.4%
	"		2	
		(in 2012)		Examiner's Comments
		(// 2012) 52% or 0.52 √		
				In contrast, most candidates performed this
				calculation correctly and were able to make a
				suitable comment relating to its increase since 1993.
		two of		IGNORE raw data quotes
		1 (trend is) decrease in		
		(number of) deaths (since		
		2007) 🗸		
1	iii		2	2 idea that non-specified fluctuates
		2 consistent / steady /		Note 'a large decrease in the number of deaths
		large / dramatic, decrease		from MRSA' = 2 marks (mps 1 & 2)
		in (deaths from S. aureus		
		specified as) MRSA (from		3 e.g. isolating MRSA cases / dress code for

	 2007) ✓ 3 ref to better specific cross-infection control measure in health care ✓ 4 any correct processed data comparing either years or cause of death using figures from table 6 ✓ 		 health professionals / hygiene measures / pre operation screening 4 MRSA e.g. decrease of, 1301 / approx. 260 per year 2012 value is, 18.3% / approx. 20% / approx. ¼, of 2007 value a drop of, 82% / approx. 80%, from 2007 to 2012 <i>total</i> e.g. decrease of, 1495 / approx. 39 per year 2012 value is, 27.1% / approx. 25% / approx. ¼, of 2007 value a drop of, 73% / approx. 70% / approx. 75%, 				
			from 2007 Year 2007 2009 2010 2011 2012 Examiner Most cano not clearly mentionin specified not specifi frequently Measures credited if	m 2007 to 2012 Year Sectificates mentioning S. aureus of death S. aureus Sectified as specified as mentioning S. aureus 2007 22 or 22.4 78 or 77.6 2052 2008 18 82 1500 2009 38 or 37.7 62 or 62.3 1253 2010 49 or 49.5 51 or 50.5 960 2011 43 or 42.9 57 or 57.1 638			
	Total	6			giorio .		